A SURFACE PROBABILITY MODEL FOR ESTIMATION OF SIZE DISTRIBUTION ON A CONVEYOR BELT

Zelin ZHANG, Jianguo YANG, Dongyang Dou

National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; zhangzelin3180@163.com; scetyjg@126.com.

Abstract: Estimation of size distribution by image analysis is a key issue in mineral engineering. However, only the surface information of ore piles can be captured, which is a problem in this field while only a few researchers pay attention to this problem. A new surface probability model was proposed for estimation of size distribution on a conveyor belt based on the Chavez model in this investigation. This model was tested and verified to have smaller errors in single size fraction but have larger errors in multiple size fractions. Several error trends were found and a correction factor was introduced to correct the higher errors. A series of linear equations were developed to calculate this specific correction factor according to the average particle size and height of pile. Therefore, empirical probability can be estimated by the specific correction factor and calculated probability, and the surface information on ore piles can be converted into global information.

Keywords: size distribution, surface probability model, conveyor belt, particles

Introduction

Image analysis techniques have been used in mineral engineering since 1980. The related fields include the size distribution estimation (Al-Thyabat and Miles, 2006; Al-Thyabat et al., 2007; Casali et al., 2001; Chavez et al., 1996; Ko and Shang, 2011; King, 1982; Kemenny et al., 2001; Guyot et al., 2004; Zhao, 2013; Vallebuona et al., 2003; Zhang et al, 2012; Yang et al, 2013), ores grade estimation (Claudio et al., 2011; Jayson et al., 2007; Chatterjee et al., 2010a; Chatterjee et al., 2010b), ores type prediction (Perez et al., 1999; Singh and Rao, 2006; Tessier et al., 2007; Singh et al., 2010), and other related researches (Petruk, 1988a; Petruk, 1988b; Petruk, 1989; Petruk et al., 1991; Sun and Su, 2013). Among these fields, the estimation of size distribution is mostly studied and widely applied, such as blasting, crusher controlling and mineral processing.
The traditional measure of size distribution of ores is obtained by screening or sieving, which is considered to be accuracy but time-consuming, not suitable for real-time monitoring. Therefore, image analysis techniques have been used to estimate the size distribution. However, this method can only obtain the surface information of ore piles, which is a problem in this field and few researchers pay attention to this problem.

Chavez et al. (1966) proposed a model to estimate the probability of particles appearing on the surface of ores piles (Eq.1). This surface probability model is suitable for particles in a recipient with a constant height. They selected a typical modeling unit, like Fig. 1, and indicated a particle F_i of size D_i appearing on the surface depends on the number of particles within the height H of the unit. They stated that “the probability P_i within a given pile depends on the particle size, and that all particles of size i will have the same probability to appear on the surface”. In Eq. (1), given the average fragment size D_M, the expression $(H - D_i)$ is the remaining height of the pile below the surface particle F_i, and $(H - D_i) / D_M$ approximates the average number of particles within the remaining height. Therefore, the expression $1 + (H - D_i) / D_M$ is the number of particles within the height H of unit, and the reciprocal is the probability of particle F_i of size D_i to appear on the surface. In Eq. (2), N_i is the sum of particles of size D_i, therefore E_i is the number of particles of size D_i on the surface.

$$P_i = \frac{1}{1 + (H - D_i) / D_M}$$ \hspace{1cm} (1)

$$E_i = N_i P_i$$ \hspace{1cm} (2)

Chavez et al. tested the model using various recipients with different heights, such as 40 mm, 90 mm, 140 mm and 420 mm, and the results indicated the higher the pile height is, the lower the error between empirical probability and calculated probability.
In addition, they indicated smaller block positions may not be modeled by simple geometric stacking, especially when much larger blocks were present within the pile. Although they found several error trends and concluded several reasons, the method of correction was not considered. They even stated the model is suitable for the piles on the truck or some recipients, but it is not suitable for the conveyor belt with non-uniform heights (Chavez et al., 1996).

A new surface probability model was proposed for the estimation of particles size distribution on a conveyor belt based on the Chavez model. Experiments have been carried out to test and verify the surface probability model in this investigation. Several error trends were concluded and a correction method proposed for errors between empirical probability and calculated probability also was introduced for multiple size fractions, which is a key finding for the correction of size distribution estimation on conveyor belt by image analysis techniques.

Surface probability model for conveyor belt

Figure 2(a) is a sketch map of conveyor belt, the maximum height and breadth of which are H and L respectively, and the length is random. The conveyor belt was divided into two same parts, which have the same surface probability in theory. Therefore, one of the divided parts was considered as the typical model unit of conveyor belt. However, this typical model unit also is a recipient with non-uniform heights. Then it continued to be divided into several sub-units by the interval of D_i, the heights of which can be considered as constant. Now each sub-unit is suitable for the probability model of Chavez, like Fig. 2(c).

Fig. 2. Sketch map of typical model unit of conveyor belt and the parabola equation

In Fig. 2(b), i stands for size fraction; D_i is the mid-value of size fraction i; N_i is the sum of particles in size fraction i; E_i is the sum of surface particles in size fraction i; P_i is the surface probability of particles in size fraction i; j stands for sub-unit.
In Fig. 2(c), P_j is the surface probability of particles appearing on the sub-unit by the Chavez model, like Eq. (3), however, when H_j is less than D_i, the particles in size fraction i were considered as no chance to appear on the sub-unit, so the corresponding P_j is considered as zero. Supposing the particles of each size fraction were the uniform distribution, then N_j can be estimated by Eq. (4), then the surface particles of each sub-unit can be calculated by Eq. (5).

For the height H_j of each sub-unit, the profile of conveyor belt can be considered as a parabola, like Fig. 2(d). The equation of parabola can be developed by H and L. To test and verify the parabola equation, three lengths corresponding to three heights were measured by ruler and calculated by parabola equation, respectively, then the errors between measure and calculation is less than 3mm, so the parabola equation is considered to be able to calculate the height of sub-unit. Therefore, H_j was calculated by Eq. (6), and the horizontal ordinate was the mid-value of each sub-unit.

Finally, E_i is the sum of E_j, therefore P_i can be calculated by Eq. (7), which is the new surface probability model suitable for the conveyor belt and it only related with H_j and P_j at last.

$$P_j = \begin{cases}
 \frac{1}{1+(H_j-D_j)/D_M} & \text{if } H_j < D_i, \\
 0 & \text{if } H_j \geq D_i.
\end{cases} \tag{3}$$

$$N_j = \frac{H_j N_i}{\sum H_j} \tag{4}$$

$$E_j = N_j P_j \tag{5}$$

$$H_j = \frac{4H}{L^2} x^2 - H, \quad \frac{(2j-1)D_i}{2} \leq x \leq \frac{3D_i}{2}, \quad \frac{3D_i}{2} \leq \frac{2}{2}$$

$$P_i = \frac{E_i}{N_i} = \frac{\sum E_j}{N_i} = \frac{\sum N_j P_j}{N_i} = \frac{\sum H_j P_j}{\sum H_j} \tag{6}$$

Model validation and test

Surface probability model for conveyor belt was established and several experiments were carried out to test and validation the model and try to find out several relationships between empirical probability and calculated probability.

Fig. 3(a) and 3(b) are the equipments designed for testing surface probability model. A belt was closed by two organic glasses in two sides, which was convenient to measure the height and breadth of particle pile by tape, like Fig. 3(c). In addition, a mobile dam-board was used to adjust the height of particle pile, like Fig. 3(d).
Model validation was carried out in four size fractions, 3–6 mm, 6–13 mm, 13–25 mm and 25-50 mm. The experimental procedures were as follows.

1. Counting the number of particles in each size fraction
2. Mixing particle pile homogeneously on a flat tablet by rolling-over them from one place to another place three times
3. Pouring the homogeneous pile into the belt, and using the mobile dam-board to control the height of pile
4. Flattening the surface of pile and capturing the image of pile surface
5. Counting the number of particles in each size fraction by drawing tool in computer, zoom functions in which was used to recognize the small particles on surface and marker function was used to count with no repetition
6. The number of particles on surface divided by sum of particles in each size fraction was the empirical surface probability
7. Repeating (2) to (6) three times, and considering the mean value of three empirical probabilities as the final empirical probability
8. Calculating the surface probability of each size fraction by Eq. (7), and comparing the empirical probability and calculated probability
Test one: particles in single size fraction were used to test the model in three heights of pile (100 mm, 120 mm and 150 mm).

The reason of selecting these three heights was that the height of conveyor belt on mineral industry was usually about 160 mm, therefore the heights of piles in belt usually were less than 160 mm, but not more. In this test, the sums of each size fraction were 45833 particles in 3–6 mm, 4058 particles in 6–13 mm, 1250 particles in 13–25 mm and 262 particles in 25–50 mm. The breadths (B) corresponding to heights 100 mm, 120 mm and 150 mm were 434 mm, 476 mm and 532 mm, respectively. The values of D_m of four size fractions were 4.5 mm, 9.5 mm, 19.5 mm and 37.5 mm, respectively. Figure 4(a) is the images of four size fractions captured in the height of 100 mm, and the expression “3–6–100” means the size fraction 3–6 mm in the height of 100 mm. Figures 4(b), 4(c) and 4(d) are the comparisons of empirical probability and calculated probability in three heights of pile. The results indicated the empirical probability and calculated probability of each size fraction were almost equal in three heights, which demonstrated the surface probability model for the conveyor belt is feasible in single size fraction, but the differences between these two probabilities increased with the increase of size fraction, because the range of larger size fraction is bigger and the pile surface of larger size fraction is more rugged. In addition, the probability of every size fraction reduced with the increase of height.

Fig. 4. (a): Images of four size fractions captured in the height of 100mm; (b), (c) and (d): Comparisons of empirical probability and calculated probability in three heights of pile
Test two: multiple size fractions were mixed to test the model in three heights (100 mm, 120 mm and 150 mm).

In order to recognize the size fractions of particles on the surface, particles of different size fractions were painted with different colors. Size fraction 3–6 mm is yellow and has 58500 particles; 6–13 mm is red and has 9600 particles; 13–25 mm is blue and has 620 particles; 25–50 mm is self–colored and has 70 particles. Figure 5(a) shows the number of particles in four size fractions. Multiple size fractions 3–13 mm, 3–25 mm and 3–50 mm were mixed respectively and used to compare the empirical probability and calculated probability of each size fraction in three heights of pile. Figures 5(b), 5(c) and 5(d) show multiple size fractions 3–13 mm, 3–25 mm and 3–50 mm in the height of 100 mm. The breadths (B) corresponding to heights 100 mm, 120 mm and 150 mm also were 434 mm, 476 mm and 532 mm, respectively. Dm of 3–13 mm, 3–25 mm and 3–50 mm were 5.205 mm, 5.334 mm and 5.367 mm, respectively. In each multiple size fraction, empirical probability and calculated probability of every
A surface probability model for estimation of size distribution on a conveyor belt

size fraction in different heights were obtained and showed in Fig. 6, which combined the results in test one. Results indicated the differences between empirical probability and calculated probability of each size fraction increased with the increase of range of multiple size fractions, the main reason of which is the covering of particles in different size fractions. In addition, empirical probabilities of 3–6 mm was smaller than calculated probabilities all the time. The empirical probabilities of 6–13 mm were sometimes larger and sometimes smaller than calculated probabilities. The empirical probabilities of 13–25 mm and 25–50 mm were larger than the calculated probabilities all the time, which indicated that larger particles should easier appear on the surface than smaller particles in the multiple size fractions. According to the comparisons for different heights, the larger the pile height, the lower is the difference between empirical and calculated probabilities.

Correction method for model error

Tests one and two indicated that the empirical and calculated probabilities of each size fraction were almost equal in single size fraction, but they were very different in multiple size fractions. The main reason is the covering of particles in different size fractions. We considered the empirical surface probability as the “actual surface
probability”, therefore, the difference between empirical and calculated probability is the error of surface probability model for the conveyor belt. In engineering applications, piles usually had wide range of multiple size fractions. Therefore, particles of 3–50 mm were used to find the relationship between empirical and calculated probability and try to propose a method to correct the model error.

According to a constant size range of particles, only the size distribution and the height of pile in belt were the variables. D_m can stand for the condition of size distribution of number in a degree. However, different size distributions maybe have the same value of D_m, and the empirical probability of every size fraction maybe change, but the calculated probability is constant in a constant height of pile. Under this condition, a pile with three different size distributions (shown in Fig. 7(a)) but with the same value of D_m ($D_m = 7.438$) was used to investigate the changes of empirical probability in three heights, the results of which were shown in Fig. 7(b), 7(c) and 7(d). In the expression “100/7.438”, “100” means the height of pile and “7.438” means the value of D_m. Results indicated the empirical probabilities of every size fraction in three different size distributions were almost equal in three heights of pile. Therefore, we can consider one D_m corresponds to one empirical probability in a constant height of pile, in spite of the change of size distributions. One D_m also corresponds to one calculated probability in a constant height of pile, therefore, variation tendencies of the empirical and calculated probabilities with D_m can be obtained to find some relationships.

Finally, three heights (100 mm, 120 mm and 150 mm) of piles and five different D_m (5.367 mm, 6.037 mm, 7.438 mm, 8.399 mm and 9.7799 mm) were used to find the relationship between empirical and calculated probability. Figure 8(a) shows the particle numbers of four size fractions corresponding to five different D_m. These four size fractions were the colored particles on test two. Because particles in 3–6 mm were much more than other size fractions, only adjusting the number of particles in 3–6 mm will obtain five different D_m easily. We defined the correction factor (r)

$$ r = \frac{\text{Empirical probability}}{\text{Calculated probability}}. \tag{8} $$

Figure 8(b), 8(c) and 8(d) showed the variation tendencies of empirical probability, calculated probability and the correction factor with D_m in three heights of pile. The Y-axis of every trend image used LOG coordinate for the convenience of data display. Results indicated the variation tendencies of empirical probability and calculated probability with D_m were not the same in four size fractions, but the correction factor of four size fractions reduced with the increase of D_m in three heights. We used linear equation to model the correction factor and D_m by software MATLAB, showing in Fig. 8(a), 8(b) and 8(c). R-square and Root-Mean-Square Error (RMSE) were used to measure the goodness of fitting of linear equations, which indicated these equations were well fitted. Twelve fitting equations were as follows:
A surface probability model for estimation of size distribution on a conveyor belt

3-6-100: \(r = -0.035 \, Dm + 0.4286 \) (9)
3-6-120: \(r = -0.02669 \, Dm + 0.3354 \) (10)
3-6-150: \(r = -0.03197 \, Dm + 0.3594 \) (11)
6-13-100: \(r = -0.1037 \, Dm + 1.322 \) (12)
6-13-120: \(r = -0.1156 \, Dm + 1.445 \) (13)
6-13-150: \(r = -0.129 \, Dm + 1.494 \) (14)
13-25-100: \(r = -0.3214 \, Dm + 3.989 \) (15)
13-25-120: \(r = -0.2869 \, Dm + 3.782 \) (16)
13-25-150: \(r = -0.3346 \, Dm + 4.07 \) (17)
25-50-100: \(r = -0.3066 \, Dm + 4.019 \) (18)
25-50-120: \(r = -0.6866 \, Dm + 8.147 \) (19)
25-50-150: \(r = -0.8358 \, Dm + 9.546 \) (20)

Fig. 7. (a): three different size distributions with the same value of Dm; (b), (c) and (d): comparisons of empirical probabilities of four size fractions in three size distributions and three heights of pile
Z. Zhang, J. Yang, D. Dou
Fig. 8. (a): size distributions corresponding to five different values of Dm; (b), (c) and (d): variation tendencies of empirical probability, calculated probability and the correction factor of four size fractions with Dm in three heights of pile.

These linear equations showed different size fractions and heights of pile had different correction model. Therefore, according to Dm and the height of particle pile of 3–50 mm, a corresponding correction equation can be selected to calculate the correction factor and correct the error of surface probability model. More correction equations in different conditions needed to be developed in the future.
Conclusions

A new surface probability model for the estimation of particles size distribution on a conveyor belt was developed based on the Chavez model, which can be used to correct the capturing error and improve the estimation accuracy of size distribution by image analysis in mineral engineering. A series of experiments were carried out to test and verify the new model and several conclusions were obtained as follows.

- The empirical probability and calculated probability of each size fraction were almost equal in single size fraction, and the two probabilities of each size fraction reduced with the increase of height of pile.
- Differences between empirical probability and calculated probability of each size fraction increased with the increase of range of multiple size fractions, the main reason of which is the covering of particles in different size fractions. In addition, larger particles should be easier to appear on the surface than smaller particles in multiple size fractions. In addition, the higher the pile height is, the lower the difference between empirical probability and calculated probability is.
- One D_m corresponds to one empirical probability in a constant height of pile, in spite of the change of size distributions.
- The variation tendencies of empirical probability and calculated probability with D_m were not the same in four size fractions, but the correction factor of four size fractions reduced with the increase of D_m in three heights.
- A series of linear equations of correction factor and D_m were developed to correct the errors between empirical probability and calculated probability, and more correction equations in different conditions needed to be developed in the future.

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (No.51304192), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130095110005) and Colleges and Universities in Jiangsu Province plans to graduate research and innovation (CXZZ13_0951).

References

A surface probability model for estimation of size distribution on a conveyor belt

